Search results

Search for "wall teichoic acids" in Full Text gives 1 result(s) in Beilstein Journal of Nanotechnology.

Ultrastructural changes in methicillin-resistant Staphylococcus aureus induced by positively charged silver nanoparticles

  • Dulce G. Romero-Urbina,
  • Humberto H. Lara,
  • J. Jesús Velázquez-Salazar,
  • M. Josefina Arellano-Jiménez,
  • Eduardo Larios,
  • Anand Srinivasan,
  • Jose L. Lopez-Ribot and
  • Miguel José Yacamán

Beilstein J. Nanotechnol. 2015, 6, 2396–2405, doi:10.3762/bjnano.6.246

Graphical Abstract
  • ; Staphylococcus aureus; wall teichoic acids; Introduction Bacterial infections are a major reason of morbidity and mortality globally [1], and most infections can be attributed to species of the genus Staphylococcus [2]. Staphylococcus aureus (S. aureus) is well known for its ability to acquire genetic
  • 100 nm. Layers of PG are built by anionic glycopolymers, known as wall teichoic acids (WTAs) [17]. These WTAs are essential in maintaining bacterial architecture, replication, and other main cell functions [18]. WTAs play an important role in antibiotic resistance in MRSA, and they increase bacterial
  • (1) wall teichoic acids (≈3 nm), (2) interaction of AgNPs with CWGs, (3) destabilization, (4) leakage of cytoplasmic material leading to bacterial cell lysis, (5) cytoplasm, (6) cytoplasmic membrane and (7) cell wall. The AgNP concentration was 11.5 ppm. STEM micrograph of cell envelope of MSSA
PDF
Album
Full Research Paper
Published 15 Dec 2015
Other Beilstein-Institut Open Science Activities